Topologically Deened Isosurfaces

نویسنده

  • Jacques-Olivier Lachaud
چکیده

In this research report, we present a new process for deening and building the set of conngurations of Marching-Cubes algorithms. Our aim is to extract a topologically correct isosurface from a volumetric image. Our approach exploits the underlying discrete topology of voxels and especially their connectedness. Our main contribution is to provide a formal proof of the validity of the generated isosurface according to the chosen connectedness. The generated isosur-face is a closed, oriented surface without singularity with no self-intersection. Furthermore, we demonstrate that it does not intersect the adjacency map (a volumetric embedding of the adjacency graph) of the foreground and of the background, thus separating the foreground from the background. Finally we show that the graph deening the isosurface is closely linked to the surfel-adjacency graph of the digital surface of the same image. R esum e Dans ce rapport de recherche, nous pr esentons une nouvelle m ethode pour d eenir et construire l'ensemble des conngurations d'algorithmes de type Marching-Cubes. Son objectif est d'extraire une isosurface topologiquement correcte d'une image volumique. Notre approche exploite la topologie discr ete sous-jacente des voxels et, plus particuli erement, la connexit e. Notre princi-pale contribution r eside dans l'apport d'une preuve formelle de la validit e de la surface extraite, qui d epend des connexit es choisies. L'isosurface obtenue est une surface orient ee et ferm ee, sans singularit e ni auto-intersection. De plus, nous d emontrons qu'elle n'intersecte pas la carte d'adjacence (une extension volumique du graphe d'adjacence) du fond et des objets. Ennn, nous montrons que le graphe d eenissant l'isosurface est etroitement li e au graphe de surfel-adjacence de la surface discr ete de la m^ eme image.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generating Topologically Correct Isosurfaces from Uniform Samples

data visualization, three dimensions, isosurfaces A function f(x,y,z) of three variables may be visualized by examining its isosurfaces f(x,y,z) = t for various values of t. To display these isosurfaces on a graphics device it is desirable to approximate them with piecewise polygonal surfaces that are (1) geometrically good approximations, (2) topologically correct, and (3) consist of a small n...

متن کامل

Topologically Deened Isosurfaces Ecole Normale Supérieure De Lyon Topologically Deened Isosurfaces

In this research report, we present a new process for deening and building the set of conngurations of Marching-Cubes algorithms. Our aim is to extract a topologically correct isosurface from a volumetric image. Our approach exploits the underlying discrete topology of voxels and especially their connectedness. Our main contribution is to provide a formal proof of the validity of the generated ...

متن کامل

Finding the Brain Cortex Using Fuzzy Segmentation, Isosurfaces, and Deformable Surface Models

A method for finding the cortical surface of the brain from magnetic resonance images using a combination of fuzzy segmentation, isosurface extraction, and a deformable surface is presented. After MR images are acquired and preprocessed to remove extracranial tissue, fuzzy membership functions for gray matter, white matter, and cerebrospinal fluid are computed. An iterative procedure using isos...

متن کامل

Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators

The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analysed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space (s, α, θ k); s is the edge norma...

متن کامل

Adaptive cube tessellation for topologically correct isosurfaces

Three dimensional datasets representing scalar fields are frequently rendered using isosurfaces. For datasets arranged as a cubic lattice, the marching cubes algorithm is the most used isosurface extraction method. However, the marching cubes algorithm produces some ambiguities which have been solved using different approaches that normally imply a more complex process. One of them is to tessel...

متن کامل

Dynamically Deened Recurrence Dimension

In this paper, we introduce and characterize the dynamically deened recurrence dimension, a new topological invariant number, following the idea of a previous article 9], but with some modiications and improvements. We study some example of Toeplitz subshifts for which we can show that the recurrence dimension is a topologically invariant number diierent from the topological entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996